"""
grdhisteq - Perform histogram equalization for a grid.
"""
import warnings
import numpy as np
import pandas as pd
from pygmt.clib import Session
from pygmt.exceptions import GMTInvalidInput
from pygmt.helpers import (
GMTTempFile,
build_arg_string,
fmt_docstring,
kwargs_to_strings,
use_alias,
)
from pygmt.io import load_dataarray
__doctest_skip__ = ["grdhisteq.*"]
[docs]class grdhisteq: # pylint: disable=invalid-name
r"""
Perform histogram equalization for a grid.
Two common use cases of :meth:`pygmt.grdhisteq` are to find data values
that divide a grid into patches of equal area
(:meth:`pygmt.grdhisteq.compute_bins`) or to write a grid with
statistics based on some kind of cumulative distribution function
(:meth:`pygmt.grdhisteq.equalize_grid`).
Histogram equalization provides a way to highlight data that has most
values clustered in a small portion of the dynamic range, such as a
grid of flat topography with a mountain in the middle. Ordinary gray
shading of this grid (using :meth:`pygmt.Figure.grdimage` or
:meth:`pygmt.Figure.grdview`) with a linear mapping from topography to
graytone will result in most of the image being very dark gray, with the
mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins` can
provide a list of data values that divide the data range into divisions
which have an equal area in the image [Default is 16 if ``divisions`` is
not set]. The :class:`pandas.DataFrame` or ASCII file output can be used to
make a colormap with :meth:`pygmt.makecpt` and an image with
:meth:`pygmt.Figure.grdimage` that has all levels of gray occuring
equally.
:meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid with
statistics based on a cumulative distribution function. In this
application, the ``outgrid`` has relative highs and lows in the same
(x,y) locations as the ``grid``, but the values are changed to reflect
their place in the cumulative distribution.
"""
@staticmethod
@fmt_docstring
@use_alias(
C="divisions",
D="outfile",
G="outgrid",
R="region",
N="gaussian",
Q="quadratic",
V="verbose",
h="header",
)
@kwargs_to_strings(R="sequence")
def _grdhisteq(grid, output_type, **kwargs):
r"""
Perform histogram equalization for a grid.
Must provide ``outfile`` or ``outgrid``.
Full option list at :gmt-docs:`grdhisteq.html`
{aliases}
Parameters
----------
grid : str or xarray.DataArray
The file name of the input grid or the grid loaded as a DataArray.
outgrid : str or bool or None
The name of the output netCDF file with extension .nc to store the
grid in.
outfile : str or bool or None
The name of the output ASCII file to store the results of the
histogram equalization in.
output_type: str
Determines the output type. Use "file", "xarray", "pandas", or
"numpy".
divisions : int
Set the number of divisions of the data range [Default is 16].
{R}
{V}
{h}
Returns
-------
ret: pandas.DataFrame or xarray.DataArray or None
Return type depends on whether the ``outgrid`` parameter is set:
- xarray.DataArray if ``output_type`` is "xarray""
- numpy.ndarray if ``output_type`` is "numpy"
- pandas.DataFrame if ``output_type`` is "pandas"
- None if ``output_type`` is "file" (output is stored in
``outgrid`` or ``outfile``)
See Also
-------
:meth:`pygmt.grd2cpt`
"""
with Session() as lib:
file_context = lib.virtualfile_from_data(check_kind="raster", data=grid)
with file_context as infile:
arg_str = " ".join([infile, build_arg_string(kwargs)])
lib.call_module("grdhisteq", arg_str)
if output_type == "file":
return None
if output_type == "xarray":
return load_dataarray(kwargs["G"])
result = pd.read_csv(
filepath_or_buffer=kwargs["D"],
sep="\t",
header=None,
names=["start", "stop", "bin_id"],
dtype={
"start": np.float32,
"stop": np.float32,
"bin_id": np.uint32,
},
)
if output_type == "numpy":
return result.to_numpy()
return result.set_index("bin_id")
[docs] @staticmethod
@fmt_docstring
def equalize_grid(
grid,
*,
outgrid=True,
divisions=None,
region=None,
gaussian=None,
quadratic=None,
verbose=None,
):
r"""
Perform histogram equalization for a grid.
:meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid
with statistics based on a cumulative distribution function. The
``outgrid`` has relative highs and lows in the same (x,y) locations as
the ``grid``, but the values are changed to reflect their place in the
cumulative distribution.
Full option list at :gmt-docs:`grdhisteq.html`
Parameters
----------
grid : str or xarray.DataArray
The file name of the input grid or the grid loaded as a DataArray.
outgrid : str or bool or None
The name of the output netCDF file with extension .nc to store the
grid in.
divisions : int
Set the number of divisions of the data range.
gaussian : bool or int or float
*norm*.
Produce an output grid with standard normal scores using
``gaussian=True`` or force the scores to fall in the ±\ *norm*
range.
quadratic: bool
Perform quadratic equalization [Default is linear].
{R}
{V}
Returns
-------
ret: xarray.DataArray or None
Return type depends on the ``outgrid`` parameter:
- xarray.DataArray if ``outgrid`` is True or None
- None if ``outgrid`` is a str (grid output is stored in
``outgrid``)
Example
-------
>>> import pygmt
>>> # Load a grid of @earth_relief_30m data, with an x-range of 10 to
>>> # 30, and a y-range of 15 to 25
>>> grid = pygmt.datasets.load_earth_relief(
... resolution="30m", region=[10, 30, 15, 25]
... )
>>> # Create a new grid with a Gaussian data distribution
>>> grid = pygmt.grdhisteq.equalize_grid(grid=grid, gaussian=True)
See Also
-------
:meth:`pygmt.grd2cpt`
Note
----
This method does a weighted histogram equalization for geographic
grids to account for node area varying with latitude.
"""
# Return an xarray.DataArray if ``outgrid`` is not set
with GMTTempFile(suffix=".nc") as tmpfile:
if isinstance(outgrid, str):
output_type = "file"
else:
output_type = "xarray"
outgrid = tmpfile.name
return grdhisteq._grdhisteq(
grid=grid,
output_type=output_type,
outgrid=outgrid,
divisions=divisions,
region=region,
gaussian=gaussian,
quadratic=quadratic,
verbose=verbose,
)
[docs] @staticmethod
@fmt_docstring
def compute_bins(
grid,
*,
output_type="pandas",
outfile=None,
divisions=None,
quadratic=None,
verbose=None,
region=None,
header=None,
):
r"""
Perform histogram equalization for a grid.
Histogram equalization provides a way to highlight data that has most
values clustered in a small portion of the dynamic range, such as a
grid of flat topography with a mountain in the middle. Ordinary gray
shading of this grid (using :meth:`pygmt.Figure.grdimage` or
:meth:`pygmt.Figure.grdview`) with a linear mapping from topography to
graytone will result in most of the image being very dark gray, with
the mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins`
can provide a list of data values that divide the data range into
divisions which have an equal area in the image [Default is 16 if
``divisions`` is not set]. The :class:`pandas.DataFrame` or ASCII file
output can be used to make a colormap with :meth:`pygmt.makecpt` and an
image with :meth:`pygmt.Figure.grdimage` that has all levels of gray
occuring equally.
Full option list at :gmt-docs:`grdhisteq.html`
Parameters
----------
grid : str or xarray.DataArray
The file name of the input grid or the grid loaded as a DataArray.
outfile : str or bool or None
The name of the output ASCII file to store the results of the
histogram equalization in.
output_type : str
Determine the format the xyz data will be returned in [Default is
``pandas``]:
- ``numpy`` - :class:`numpy.ndarray`
- ``pandas``- :class:`pandas.DataFrame`
- ``file`` - ASCII file (requires ``outfile``)
divisions : int
Set the number of divisions of the data range.
quadratic : bool
Perform quadratic equalization [Default is linear].
{R}
{V}
{h}
Returns
-------
ret: pandas.DataFrame or None
Return type depends on the ``outfile`` parameter:
- pandas.DataFrame if ``outfile`` is True or None
- None if ``outfile`` is a str (file output is stored in
``outfile``)
Example
-------
>>> import pygmt
>>> # Load a grid of @earth_relief_30m data, with an x-range of 10 to
>>> # 30, and a y-range of 15 to 25
>>> grid = pygmt.datasets.load_earth_relief(
... resolution="30m", region=[10, 30, 15, 25]
... )
>>> # Find elevation intervals that splits the data range into 5
>>> # divisions, each of which have an equal area in the original grid.
>>> bins = pygmt.grdhisteq.compute_bins(grid=grid, divisions=5)
>>> print(bins)
start stop
bin_id
0 179.0 397.5
1 397.5 475.5
2 475.5 573.5
3 573.5 710.5
4 710.5 2103.0
See Also
-------
:meth:`pygmt.grd2cpt`
Note
----
This method does a weighted histogram equalization for geographic
grids to account for node area varying with latitude.
"""
# Return a pandas.DataFrame if ``outfile`` is not set
if output_type not in ["numpy", "pandas", "file"]:
raise GMTInvalidInput(
"Must specify 'output_type' either as 'numpy', 'pandas' or 'file'."
)
if header is not None and output_type != "file":
raise GMTInvalidInput("'header' is only allowed with output_type='file'.")
if isinstance(outfile, str) and output_type != "file":
msg = (
f"Changing 'output_type' from '{output_type}' to 'file' "
"since 'outfile' parameter is set. Please use output_type='file' "
"to silence this warning."
)
warnings.warn(message=msg, category=RuntimeWarning, stacklevel=2)
output_type = "file"
with GMTTempFile(suffix=".txt") as tmpfile:
if output_type != "file":
outfile = tmpfile.name
return grdhisteq._grdhisteq(
grid,
output_type=output_type,
outfile=outfile,
divisions=divisions,
quadratic=quadratic,
verbose=verbose,
region=region,
header=header,
)